The Challenge of Fetal Pain: What do we know?

- Jonathan S. Ponesse BSc MD FRCPC
- Developmental Pediatric Neurology
- Children's Hospital of Eastern Ontario
- 8 Ottawa Children's Treatment Centre
- ? Assistant Professor
- Position
 Department of Pediatrics
- ? University of Ottawa

DISCLOSURE

I, Jonathan Ponesse, have no relationships with any commercial interests.

Important Questions

- Can the human fetus feel pain?
- If so, how would we know?
- ? When would this capacity begin?
- ? What fetal structures and functions support this capacity?

Inside and Outside the Womb

- Infants born prematurely have the same anatomy and physiology as their unborn counterparts.
- Py studying the premature infant outside the womb we are allowed to understand what is happening inside the womb.

23 weeks GA

Fetal Surgery

Advances into fetal surgery have called for new advances into fetal anesthesia and fetal monitoring.

? 19-26 weeks

Fetal Pain - Not a new science

- ? More than 30 years of data
 - ? Anand in 1987 reported on premature infants that were operated upon without anesthesia.
 - measured 'fight and flight' hormones during and after surgery and clearly demonstrated that these infants not only felt pain, but had an intense response.
 - ? further showed that the untreated pain led to a poorer health and development outcome in these infants.

1987 Turning Point

- It wasn't until two landmark articles published in 1987 (Anand and Green, Lancet, 1987, and Anand and Hickey NEJM, 1987) that the practice of pediatric anesthesia began to change broadly.
- It soon became <u>unacceptable</u> to operate on premature infants without meeting their pain and stress needs.

Nociception vs pain

- Involves the physical activation of specific nervous pathways without the conscious perception and subjective emotional experience of pain
 - Subcortical
 - ? We don't sense pain, we sense noxious stimulation

Nociception

Prerequisites to feeling pain

- Peripheral input
 - ? Peripheral pain receptors
 - ? Afferent neural pathway to spinal cord
- Processing structures
 - PHPA axis hormones "fight or flight"
 - ? Amygdala memory and emotional state
 - ? Brain stem inhibition
- ? Conscious experience
 - ? Thalamocortical circuit

Objection #1

- "Immaturity of the fetal nervous system means that the nociceptive pathways are nonfunctional"
 - ? Assumption:
 - Pain perception during fetal life must engage same neural structures as those used by adults

Response

- ? The fetus uses the anatomy/physiology existing at that particular time to communicate nociception
- First functional and anatomic pathways may substantially differ from their mature counterparts
 - ? Fetuses are not tiny adults

Carrying the signal

8 and 13 weeks

Nerve fibers penetrate skin

- ? Until specific nociceptive nerve fibres are mature and coated with myelin, the pain signals are carried by fibres from cutaneous touch receptors
- ? The skin is very thin, leaving the nerve fibers closer to the surface.

Distribution of these receptors

7 week fetus

Cutaneous touch receptors

- ? These are seen at 7 weeks around the mouth and face, and cover the entire body by 20 weeks.
- ? They are more densely configured per square inch than on an adult.

Objection #2

"Lack of myelination of the nociceptive pathways signifies diminished nociception."

Response

- But nociceptive impulses in adults carried through unmyelinated (C-polymodal) and thinly myelinated (A-delta) fibres
 - ? Merely implies slower conduction velocity
- slower conduction speed in nerves of fetuses would be offset by smaller inter-neuron distances traveled by the impulse.
- Moreover, nociceptive nerve tracts in spinal cord and CNS undergo complete myelination during 2nd/3rd trimesters

Objection #3

"Immaturity of the fetal nervous system would indicate that nociceptive input is diminished"

Response

- With maturity, nociception is modulated by inhibitory pathways
- In the fetus, the ability to modulate (or inhibit pain) does not develop until 36 40 weeks gestation
 - Descending noradrenergic and serotonergic
 - P Dorsal horn interneuron

Objection #4

"Nociceptive neurochemistry is functionally

immature"

19 - 21 weeks

Neurotransmitters bind with specific receptors in a lock and key fashion.

Substance P (a tachykinin)

- opioid receptor labeling
- receptors found in high density in fetal brain

stem

- ca 12-16 w GA

Objection #4

"We will never get anywhere with the fetal pain question, because we have little ability to gauge the functional maturity of the fetal nervous system"

Non-verbal markers of Pain

- ? The human fetus is incapable of verbal expression
- ? Vocalizations
 - ? From age of viability in preemies
- ? Withdrawal reflexes
 - ? First motor reflex
 - Property in the Property is a second of the Property in the
 - ? 7.5 weeks GA
 - ? Hands touch sensitive at 10.5 weeks

Cutaneous Flexor Reflex

- ? has a lower threshold in pre-term neonates than in term neonates or adults.
- ? The study of this reflex has been used to establish when connection between the skin and the spinal cord are first made in the fetus.
 ? Averaging 20 wks GA
- This reflex has been shown to parallel pain perception exactly in terms of threshold, peak intensity, and sensitivity to analgesics.

Facial expressions and pain

- ? 26 week prems have pain-specific facial expressions
 - ? Coordinated by a subcortical system
 - "emotional-motor system"

Physiologic Responses

- In utero studies of living fetuses demonstrate the ability to generate 'fight or flight' hormones in response to painful stimuli as early as 16 weeks.
 - ? Fetal blood sampling
 - Property aspirations
 Property is a spiration of the second of
 - ? Fetal amniotic shunts
- Catecholamines, B-endorphins, Cortisol
- Blood flow to the brain was decreased within 70 seconds after a painful stimulation
- ? Thalamus-, not cortex-dependent

Physiologic Responses

- When a needle is placed through the liver to give the fetus a transfusion, these hormones are released. The abdominal wall has pain fibers.
- When the needle is placed in the umblical vein, which has no pain fibers, no consistent neurohormonal responses occurred.
- ? Whereas the liver aspiration produced changes proportional to the stimulus.
 - ? Infer a pain response
 - even in absence of thalamocortical connections

Response to pain relief

16 week fetus

- ? The hormonal, autonomic and metabolic responses were reduced when fentanyl
 - ? a pain relieving opiate
- ? was administered directly to the fetus.

Umbilical vein placement

Transabdominal and liver placement

Objection #5

- The cortex is required to "feel" pain"
 - Psychological nature of pain presupposes the presence of functional thalamocortical circuitry required for conscious perception

Response

- In adults, stimulation or ablation of the cerebral cortex does not alter pain perception
 - ? While stimulation or ablation of the thalamus does
- Evidence exists for children missing the bulk of their cerebral cortex nevertheless experience pain
 - ? Hydranencephaly
 - ? Anencephaly

Evidence of functional maturity of cerebral cortex

- ? EEG patterns
 - ? Wakefulness, sleep
 - ? 20-21 weeks GA
 - ? =thalamo-cortical integrity

Summary

- Markers of fetal nociception/pain perception start at the 7th week and mature over the next 12 weeks.
- ? Requisite structures
 - ? Nociceptors
 - ? Sensory nerves
 - ? Dorsal column
 - ? thalamus
- By week 20, the anatomy of the nervous system and the physiology of responding to the pain impulse draws a clear cause and effect relationship.

Summary

- ? Ramifications
 - ? After spinal cord afferent development at GA 10
 - May be no age limit at which one can be sure noxious stimuli are not harmless

References

- 1. International Association for the Study of Pain; IASP Pain Terminology. A sample list of frequently used terms from: Classification of Chronic Pain, Second Edition, IASP Task Force on Taxonomy, edited by H. Merskey and N. Bogduk, IASP Press, Seattle, 1994, pp. 209-214. (Website: http://www.iasp-pain.org/terms-p.html)
- 2. Anand KJS, Hickey PR. Pain and its effects in the human neonate and fetus. New England Journal of Medicine (1987) 317:1321-1329.
- 3. Ward-Platt M, Anand KJS, Aynsley-Green A. Ontogeny of the stress response to surgery in the human fetus, neonate and child. Intensive Care Medicine (1989) 15:844-945.
 - Anand KJS, Craig KD. New perspectives on the definition of pain. Pain (1996) 67: 3-6.
- 5. Anand KJS, Rovnaghi C, Walden M, Churchill J. Consciousness, behavior, and clinical impact of the definition of pain. Pain Forum (1999) 8: 64-73.
- 6. Anand KJS, Maze M. Fentanyl, fetuses, and the stress response; signals from the beginnings of pain? Anesthesiology 2001; 95 (4): 823-825.
- 7. Bhutta AT, Anand KJS. Vulnerability of the developing brain: neuronal mechanisms. Clinics in Perinatology 2002; 29 (3): 357-372.
- Anand KJS, Taylor B. Consciousness and the fetus. American Academy of Pediatrics: Bioethics Newsletter, Jan. 1999, pp.2-3.
- Coskun V, Anand KJS. Development of supraspinal pain processing. In: Anand KJS, Stevens BJ, McGrath PJ, editors. Pain in Neonates. Vol. 10. Amsterdam: Elsevier Biomedical Publishers, 2000, pp. 23-54.
- Modi N, Glover V. Fetal Pain and Stress. Chapter 11 in: Anand KJS, Stevens BJ, McGrath PJ (editors). Pain in Neonates, 2nd Edition, Elsevier Science Publishers, Amsterdam, 2000, pp. 217-228.
- 11. Hepper PG, Shahidullah S. The beginnings of mind--evidence from the behavior of the fetus. J Rep Infant Pscyhol 1994; 12:143-54.
- 12. Molliver ME. Kostovic I. Loos Hvd. The development of synapses in cerebral cortex of the human fetus. Brain Research 1973: 50:403-7.
- 13. Smith RP, Gitau R, Glover V, Fisk NM. Pain and stress in the human fetus. European Journal of Obstetrics, Gynecology, & Reproductive Biology 2000; 92:161-5.
- 14. Partsch CJ, Sippell WG, MacKenzie IZ, Aynsley-Green A. The steroid hormonal milieu of the undisturbed human fetus and mother at 16-20 weeks gestation. Journal of Clinical Endocrinology & Metabolism 1991; 73:969-74.
- Teixeira JM, Glover V, Fisk NM. Acute cerebral redistribution in response to invasive procedures in the human fetus. American Journal of Obstetrics & Gynecology 1999; 181:1018-25.
- 16. Fitzgerald M. Spontaneous and evoked activity of fetal primary afferents in vivo. Nature 1987; 326:603-5.
- Kinney HC, Ottoson CK, White WF. Three-dimensional distribution of 3H-naloxone binding to opiate receptors in the human fetal and infant brainstem. Journal of Comparative Neurology 1990; 291:55-78.
- 18. Teixeira J, Fogliani R, Giannakoulopoulos X, Glover V, Fisk NM. Fetal haemodynamic stress response to invasive procedures. Lancet 1996; 347:624.
- 19. Kopecky EA, Ryan ML, Barrett JF, et al. Fetal response to maternally administered morphine. American Journal of Obstetrics & Gynecology 2000: 183:424-30.
- Giannakoulopoulos X, Sepulveda W, Kourtis P, Glover V, Fisk NM. Fetal plasma cortisol and beta-endorphin response to intrauterine needling. Lancet 1994; 344:77-81.
- 21. Gitau R, Fisk NM, Teixeira JM, Cameron A, Glover V. Fetal hypothalamic-pituitary-adrenal stress responses to invasive procedures are independent of maternal responses. Journal of Clinical Endocrinology & Metabolism 2001; 86:104-9.
- Vanhatalo S, van Nieuwenhuizen O. Fetal pain? Brain & Development 2000; 22:145-50.
- 23. Fisk NM, Gitau R, Teixeira JM, Giannakoulopoulos X, Cameron AD, Glover VA. Effect of direct fetal opioid analgesia on fetal hormonal and haemodynamic stress response to intrauterine needling. Anesthesiology 2001; 95:828-835.
 - Saunders PJ. Do fetuses feel pain? We should give them the benefit of the doubt. British Medical Journal 1997; 314:303.
- 25. Giannakoulopoulos X, Teixeira J, Fisk N, Glover V. Human fetal and maternal noradrenaline responses to invasive procedures. Pediatric Research 1999; 45:494-9.
- Goldman-Rakic PS. Development of cortical circuitry and cognitive function. Child Development 1987; 58:601-22.
- 27. Craig AD. A new view of Pain as a Homeostatic Emotion. Trends in Neurosciences 2003; 26 (6): 303-307.